

Science Learning Journey

KS3 Purpose of study

A high-quality science education provides the foundations for understanding the world through the specific disciplines of biology, chemistry and physics. Science has changed our lives and is vital to the world's future prosperity, and all pupils should be taught essential aspects of the knowledge, methods, processes and uses of science. Through building up a body of key foundational knowledge and concepts, pupils should be encouraged to recognise the power of rational explanation and develop a sense of excitement and curiosity about natural phenomena. They should be encouraged to understand how science can be used to explain what is occurring, predict how things will behave, and analyse causes. <u>KS3 Aims</u>

The national curriculum for science aims to ensure that all pupils: A develop scientific knowledge and conceptual understanding through the specific disciplines of biology, chemistry and physics A develop understanding of the nature, processes and methods of science through different types of science enquiries that help them to answer scientific questions about the world around them A are equipped with the scientific knowledge required to understand the uses and implications of science, today and for the future.

KS1-2 Purpose of study

A high-quality science education provides the foundations for understanding the world through the specific disciplines of biology, chemistry and physics. Science has changed our lives and is vital to the world's future prosperity, and all pupils should be taught essential aspects of the knowledge, methods, processes and uses of science. Through building up a body of key foundational knowledge and concepts, pupils should be encouraged to recognise the power of rational explanation and develop a sense of excitement and curiosity about natural phenomena. They should be encouraged to understand how science can be used to explain what is occurring, predict how things will behave, and analyse causes. <u>KS1-2 Aims</u>

The national curriculum for science aims to ensure that all pupils: A develop scientific knowledge and conceptual understanding through the specific disciplines of biology, chemistry and physics A develop understanding of the nature, processes and methods of science through different types of science enquiries that help them to answer scientific questions about the world around them A are equipped with the scientific knowledge required to understand the uses and implications of science, today and for the future.

Ç	Summer 1.2: For electron Force fields, sta electricity, r	orce fields and hagnets tic and current resistance,	Summer 1.1: Forces and motion Forces and movement, energy, speed, turning forces Summer 2.1: Physics revision and projects Models in science, energy, forces, waves, machines		Spring 1.2: Reactivity Types of explosions, energy and reactivity, displacement, extracting materials Spring 2.2: Chemistry transition to GCSE Ions, energy and transfers, rates and reaction, equations		Spring 1.1: Making n About ceramics, po composite mater recycling mater	naterials lymers, rials, ials	<u>Autumn 1.2: Plant reactions</u> Plant reactions adaptations, pla and crop gr	
Ž	Summer 2. <u>transition</u> Differences, fie effect, mode	2: Physics to GCSE Ids, cause and Is, variables					Spring 2.1: Chemistry revision and projects Working scientifically, separating substances		on <u>Autumn 2.2</u> <u>transition t</u> Diseases, contr testing medicir	
	<u>Autumn 1.1: Food and</u> <u>nutrition</u> Nutrients, uses of nutrients, balanced diets, digestion	<u>Autumn 1.</u> rej Classificatio types of repro fertilisati	2: Plants and their production on and biodiversity, oduction, pollination, ion and dispersal	<u>Sprin</u> Burning safety,	Spring 1.1: Combustion Burning fuels, oxidation, fire safety, air pollution, global warming		Spring 1.2: The periodic table Dalton's atomic model, chemical properties, physical and chemical trends		Summer 1.1: Fluids The particle model, changing state, pressure, floating and sinking, drag	
	Autumn 2.1: Breathing and respiration Aerobic & anaerobic respiration, gas exchange system, getting oxygen	<u>Autumn 2.2: Ur</u> Microscopic pro	nicellular organisms fungi, bacteria, toctists	Spring 2.1 Metal p metals, m	1: Metals and their uses properties, corrosion, acids and water, pure netals and alloys	Spring 2.2: Rocks Rocks and their uses, igneous and metamorphic, weathering and erosion, sedimentary rocks		Summer 2.1: Energy transfer Temperature changes, transferring energy, power and efficacy		

Chemistry

